Теория строения бутлерова а м. Химического строения теория

Теория химического строения - учение о строении молекулы , описывающее все те её характеристики, которые в своей совокупности определяют химическое поведение (реакционную способность) данной молекулы. Сюда относятся: природа атомов , образующих молекулу, их валентное состояние, порядок и характер химической связи между ними, пространственное их расположение, характерное распределение электронной плотности , характер электронной поляризуемости электронного облака молекулы и т. д.

Основные положения теории химического строения, являющейся фундаментом химии , были развиты русским химиком А. М. Бутлеровым .

Бутлеров определял понятие химического строения так:

Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определённым количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которой химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу .

Предпосылки создания теории химического строения

В 1812 году итальянский физик и химик Амедео Авогадро , изучая молекулярные веса газов (водорода , кислорода , азота , хлора), выдвинул молекулярную гипотезу строения вещества. Однако работа Авогадро долгое время не получала признания, что тормозило развитие основных идей в области химического строения молекул. Лишь после убедительного доклада Станислао Канниццаро на первом международном съезде химиков в Карлсруэ (1860) атомные веса, определённые с помощью закона Авогадро, стали общепринятыми . На съезде разграничили понятия «атом», «молекула», утвердили атомно-молекулярное учение , основное положение которого «атомы при взаимодействии образуют молекулу».

Атомно-молекулярное учение послужило основой создания теории химического строения Бутлерова.

Теория химического строения Бутлерова

Термин «химическое строение» впервые ввёл А. М. Бутлеров 19 сентября 1861 года в докладе «О химическом строении веществ» на химической секции Съезда немецких естествоиспытателей и врачей в Шпейере (опубликованном в том же году на немецком и в следующем - на русском языках ). В том же докладе он заложил основы классической теории химического строения. Главные положения этой теории следующие:

  • атомы в молекулах веществ соединены друг с другом согласно их валентности, порядок распределения связей в молекуле называется химическим строением;
  • изменение этой последовательности приводит к образованию нового вещества с новыми свойствами;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от «химического строения», то есть от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой;
  • атомы в молекулах оказывают влияние друг на друга, и это влияние приводит к химическим изменениям поведения атома;
  • определить состав и строение химического вещества можно по продуктам химических превращений.

Геометрия молекул

В 1864 году Бутлеров первым объясняет явление изомерии, показав что изомеры - это соединения, обладающие одинаковым элементным составом, но различным химическим строением. В 1874 году возникает стереохимия , или трёхмерная структурная химия в форме постулата Вант-Гоффа о тетраэдрической системе валентностей у атома углерода .

В настоящее время принято различать структурную и пространственную изомерию.

Структурную изомерию подразделяют на изомерию скелета, обусловленную различным порядком связи атомов, образующих скелет молекулы, например в Н-бутане и изобутане , и на изомерию положения одинаковых функциональных групп при одинаковом углеродном скелете молекулы, например в орто- , мета- и пара- изомерах ароматических соединений.

Пространственная изомерия обусловлена существованием стереоизомеров , соединений, имеющих одинаковый порядок связей атомов, но различное пространственное расположение. К видам пространственной изомерии относятся: оптическая изомерия , обусловливающая существование энантиомеров - пары стереоизомеров, представляющих собой зеркальные отражения друг от друга, не совмещаемые в пространстве; диастереомерия, обусловливающая существование изомеров, не являющихся энантиомерами; геометрическая изомерия, обусловливающая цис- и транс- изомеров , свойственных соединениям с двойными связями и малыми циклами.

Электронные интерпретации строения молекул

С открытием в 1897 году электрона (Дж. Томсоном , Э. Вихертом) появились электронные интерпретации строения молекул. Американский физикохимик Г. Льюис в 1912 году предложил электронную теорию химической связи, по которой связь между атомами в молекуле осуществляется обобществлённой электронной парой . Электронная теория химической связи Льюиса стала основой классической теории строения в органической химии, базирующейся на представлении о парной связи между атомами, образованной дублетом электронов. Валентный штрих между символами элементов в молекуле был заменён двумя точками, обозначающими связывающую электронную пару.

Квантовая природа межатомных сил

В своём докладе, прочитанном в Королевском колледже в Лондоне в ознаменовании столетия опубликования трудов Дж. Максвелла по электромагнитному излучению, К. Коулсон дал анализ происхождения и сущности межатомных сил, приводящих к образованию молекулы . Коулсон, ссылаясь на работу Лондона , на примере двух атомов водорода показывает «каким образом два нейтральных атома или молекулы могут оказывать притяжение друг к другу на значительном расстоянии».

Ядра A и B двух атомов водорода находятся на расстоянии r друг от друга (рис.). Каждый атом несёт по одном электрону (в P и Q соответственно). Совокупность зарядов +e в A и -e в P приблизительно эквивалентна электрическому диполю, имеющему величину e·AP. Подобным же образом совокупность +e в B и -e в Q приблизительно эквивалентна электрическому диполю e·BQ. Эти два диполя взаимодействуют друг с другом. Общая потенциальная энергия двух диполей, m и m", находящихся на расстоянии r, равна:

M m ′ r 3 − 3 (m r) (m ′ r) r 5 {\displaystyle {\frac {mm"}{r^{3}}}-3{\frac {(mr)(m"r)}{r^{5}}}}

На языке волновой механики это выражение рассматривается как возмущение, действующее на оба атома.

Природа межатомных сил имеет электромагнитный характер и называется диполь-дипольным взаимодействием. Существуют диполь-квадрупольные, квадруполь-квадрупольные и другие взаимодействия, при которых энергия изменяется в зависимости от более высоких степеней 1/r .

Распределение электронной плотности в химических соединениях

Электронная плотность - это плотность вероятности обнаружения электрона в данной точке пространства. Электронная плотность нормирована и, соответственно, указывает на вероятное число электронов в данном элементарном объёме.

Вероятностную (статистическую) интерпретацию волновой функции сформулировал М. Борн в 1926 году как только было опубликована волновое уравнение Шрёдингера . В 1954 году М. Борн удостоен Нобелевской премии по физике с формулировкой «За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции».

Расчёт электронной плотности проводят с использованием уравнения Шрёдингера, которое решается аналитически точно для систем, содержащих только один электрон.

Получаемая радиальная функция распределения вероятности нахождения электрона в атоме водорода обладает максимумом при α 0 , как показано на рисунке. Этот наиболее вероятный радиус совпадает с боровским радиусом и принят в качестве атомной единицы для линейных размеров 1 а. е. (бор) = 0,529177·10 −10 м ≈ 0,529 Å. Более размытое облако плотности вероятности, полученное при решении уравнения Шрёдингера для атома водорода, значительно отличается от боровской модели атома и согласуется с принципами неопределённости Гейзенберга . С учётом статистической интерпретации волновой функции М. Борна и принципа неопределённости Гейзенберга длины диполей AP и BQ взаимодействующих атомов в расчётах Ф. Лондона достаточно размыты. Размыто и электронное кольцо в модели молекулы водорода по Н. Бору до состояния тороидального электронного облака с неопределёнными границами.

Наиболее вероятный радиус электронного кольца (тора) молекулы водорода (r e) определяется боровским радиусом (α 0) и длиной химической связи (d): r e 2 = α 0 2 - (d/2) 2 ; r e = 0,374 Å.

Благодаря пространственной симметрии дипольный момент молекулы водорода равен нулю, что соответствует её низкой химической активности . Пространственная симметрия электронной плотности сохраняется, если соединяющиеся в молекулу атомы имеют одинаковую энергию ионизации . В этом случае связывающее электронное кольцо располагается на равном расстоянии от каждого из ядер. Если же потенциалы ионизации различны электронная плотность смещается в сторону атома с большим первым потенциалом ионизации . Смещение электронной плотности приводит к асимметрии распределения электрических зарядов в молекуле, молекула становится полярной системой с определённым дипольным моментом .

Приближённые квантовохимические методы расчёта

Поскольку точное решение уравнения Шрёдингера для атомно-молекулярных систем, содержащих два и более электрона, невозможно, предложены приближённые методы расчёта электронной плотности. Все они возникли в 1930-х годах, проделали значительный путь развития и долгое время дополняли друг друга. Наиболее важные из них - теория валентных связей , теория молекулярных орбиталей , теория кристаллического поля , теория функционала плотности .

В рамках теории валентных связей разработана концепция резонанса (Л. Полинг) и родственная ей концепция мезомерии (К. Ингольд). Концепция резонанса рассмотрена на примере молекулярного иона водорода . Л. Полинг показал, что стабильность молекулярного иона водорода:

вызвана резонансом электрона, то есть движением его «взад и вперёд» между двумя ядрами с «резонансной частотой», равной по величине энергии резонанса (50 ккал/моль), делённой на константу Планка h. Для молекулярного иона в основном состоянии эта частота равна 7.10 14 сек −1 .

Концепция резонанса дополняла постулаты классической теории химического строения и утверждала, что если для данного соединения классическая теория допускает построение нескольких приемлемых структурных формул, то действительному состоянию молекул этого соединения отвечает не какая-либо одна отдельная формула, а некоторое их сочетание (наложение, резонанс структур) .

Мезомерия является теорией электронного строения химических соединений, согласно которой истинное распределение электронной плотности в молекуле является промежуточным между распределениями, представленными несколькими классическими формулами .

Обычно рассматривают положительный и отрицательный мезомерные эффекты:

Кампания идеологического вмешательства в теорию химического строения

Кампания началась в 1949 году с публикации статьи В. М. Татевского и М. М. Шахпаронова «Об одной махистской теории в химии и её пропагандистах» . В качестве главного объекта нападения была выбрана теория резонанса Л. Полинга. Было объявлено, что «представления о реальной молекуле как о чём-то среднем между двумя (и более) крайними абстрактными структурами являются буржуазными и поэтому направленными против всего самого „святого“». Были указаны и пропагандисты теории Я. К. Сыркин и М. Е. Дяткина - авторы книги «Химическая связь и строение молекул», в которой нашла отражение теория резонанса.

В воздухе очередной раз запахло инквизицией. В этой тревожной обстановке ведущие химики страны собрались на Всесоюзное совещание по проблемам химического строения (1951 г., Москва). Стенограмма этого совещания - один из наиболее позорных документов, когда-либо созданных коллективными усилиями ученых, хранится в химических библиотеках всего мира, и от этого срама бог весть когда ещё удастся отмыться… До крови не дошло - спасла оттепель, начавшаяся весной следующего года. Я. К. Сыркин и М. Е. Дяткина, подготовленные недавними друзьями и коллегами к выдаче в качестве первых козлов отпущения, уцелели; более того Я. К. Сыркин в дальнейшем стал академиком .

Лайнус Полинг удостоен в 1954 году Нобелевской премии по химии «за исследование природы химической связи и её применение для определения структуры сложных соединений».

Однако консенсус в теории химического строения не был достигнут. В. М. Татевский в курсе «Строение молекул» (1977 г.) отмечал:

… полностью выпадают и «висят в воздухе» представления уходящих в прошлое, но всё ещё фигурирующих в литературе так называемых «теории резонанса» и «теории мезомерии», которые не имеют основы ни в классической теории химического строения, ни в законных приложениях классической физики к вопросам строения молекул, ни в квантовой механике .

Лишь в 1991 году проведён принципиальный анализ кампании по борьбе с теорией резонанса и было показано, что эта кампания «нанесла серьёзный ущерб престижу советской науки» .

Атомы в молекулах

В классической теории химического строения понятие атома в молекуле является изначальным. Интуитивно ясно, что атом в молекуле меняется, меняются и его свойства в зависимости от окружения этого атома, прежде всего ближайшего. Основным показателем является расстояние между атомами в молекуле, определяющее как длину химической связи , так и прочность химической связи .

В квантовой теории понятие атома вторично. Так, по утверждению В. М. Татевского, молекула не состоит из атомов: «С современной точки зрения ясно, что при образовании молекулы сохраняются не атомы, а только ядра атомов и электроны» .

Одна из наиболее удачных попыток сохранения классической концепции атома в молекуле принадлежит Р. Бейдеру и его сотрудникам . В рамках этой теории (QTAIM) электронная плотность «задаёт некоторое скалярное поле в трёхмерном пространстве, которое может быть охарактеризовано, например, его совокупностью экстремальных точек, линий и поверхностей, особых точек и т. п.» .

Таким образом, в квантовой теории атомов в молекулах Р. Бейдера оказывается возможным физическое обоснование ключевых понятий химии «атом », «молекула », «химическая связь » в терминах топологии функции электронной плотности в трёхмерном пространстве и описание химического строения молекул.

Электронная корреляция и конфигурация молекул

Электронная корреляция (взаимная обусловленность движения всех электронов атомной или молекулярной системы как целого определяется электростатическим отталкиванием электронов и статическим особенностями систем, в частности принципом Паули (фермиевская корреляция). Полный учёт электронной корреляции при расчёте энергии и определении электронной структуры системы достигается методом конфигурационного взаимодействия.

Простая и надёжная система правил для понимания и предсказания конфигурации молекул заложена в теории отталкивания электронных пар, наиболее важное правило которой достаточно эмпирично, хотя имеет квантовомеханическое обоснование, заключающееся в принципе Паули, а именно «электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга». При этом конфигурация молекулы будет определяться числом связывающих и неподелённых электронных пар у центрального атома:

  • две связывающие электронные пары дают линейную конфигурацию молекулы;
  • три - конфигурацию правильного треугольника;
  • четыре - конфигурацию тетраэдра;
  • пять - тригонально-бипирамидальную конфигурацию;
  • шесть - конфигурацию октаэдра.

Наличие неподелённых электронных пар у центрального атома приводит к расширению типов конфигураций молекулы .

Строение соединений благородных газов

Открытие Бартлетта показало ошибочность популярного в то время правила октета , [как? ] согласно которому при образовании молекул атомы удовлетворяют свою потребность в достижении 8-электронной валентной оболочки, подобной электронной конфигурации благородных газов за счёт попарного обобществления своих валентных электронов. Оказалось, что атомы благородных газов, имея полностью заполненную валентную оболочку, могут вступать в химические реакции и участвовать в химическом строении молекул.

Строение электронодефицитных соединений

Структурная проблема, связанная с электронодефицитными соединениями, довольно сложна. Фундаментальная трудность заключалась в том, что в молекулах нет достаточного числа валентных электронов для того, чтобы связать все атомы обычными двухэлектронными связями. Так, например, в молекуле диборана имеется двенадцать валентных электронов, все двенадцать нужны для образования ковалентных связей шести атомов водорода с бором, так что для связи атомов бора между собой электронов не остаётся. Сам Полинг допускал, что в диборане функционируют одноэлектронные связи , а молекула в основном состоянии резонирует между семью структурами льюисовского типа, а также между многочисленными структурами, содержащими одноэлектронные связи.

Однако заслуженное признание получили исследования природы химической связи в бороводородах, выполненные американским физикохимиком У. Липскомбом . В его интерпретации в диборане имеют место четыре двух- и две трёхцентровые связи.

Четыре концевые двухцентровые двухэлектронные связи HB лежат в одной плоскости. Два же центральных атома водорода расположены симметрично над этой плоскостью и под нею и объединены с атомами бора двумя трёхцентровыми связями.

В 1976 году Липскомб удостоен Нобелевской премии по химии с формулировкой «за исследование структуры боранов (боргидритов), проясняющих проблему химических связей».

Особенности строения сэндвичевых соединений

Дальнейшее развитие теории химического строения связано с открытием и установлением структуры

Основные положения теории химического строения органических веществ А. М. Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах

Органическими веществами называют углеродсодержащие вещества (за исключением тех из них, которые по свойствам относят к неорганическим веществам - оксидов углерода, угольной кислоты и ее солей и ряда дру¬гих), независимо от того, образовались эти вещества в живых организмах или получены синтетически.

Число известных органических веществ составляет более 13 миллионов наименований, и очень быстро продолжает расти, в то время, как число известных неорганических веществ не достигло и миллиона.

Такое большое количество органических веществ, а также отличие их свойств от свойств неорганических веществ, тоже вынуждает рассматривать органическую химию как отдельный раздел химии.

Органическая химия - это химия соединений углерода и их превращениЙ. Подобное определение нельзя считать абсолютно точным, но оно указывает на наличие во составе всех органических соединений элемента углерода.

Б настоящее время синтезировано огромное число органических соеди¬нений, встречающихся в природе, а также веществ, которых в природе нет.

Объяснить огромное многообразие органических веществ, образованных небольшим числом элементов углеродом, водородом, кислородом, реже - азотом, серой и галогенами, в 1861 году смог А. М. Бутлеров, создавший теорию строения органических соединений. Он показал, что:

1. атомы углерода обладают свойством соединяться между собой, образуя цепи

2. атомы в молекулах соединены в определенной последовательности в соответствии с валентностью атомов (валентность углерода - IV, валент¬ность водорода - 1, валентность кислорода - II и т. д.)

3. свойства веществ зависят от последовательности соединения атомов в

Молекулах (химического строения)

4. существуют вещества одинакового молекулярного состава, но разного химического строения и с различными свойствами (изомеры).

Открытие такого явления, как изомерия, стало огромным шагом в раз¬витии органической химии; удалось объяснить те экспериментальные про¬тиворечия, которые химики наблюдали в то время. Например, оказалось, что химической формуле C4HIO соответствуют два вещества с разными тем¬пературами кипения - бутан и изобутан.

СНз - СН2 - СН2 - СНз

СНз - СН - СНз

I
СНз

Выяснилось, что изомерами могут быть вещества, относящиеся к разным классам органических соединений, например, изомерами являются диметиловый эфир и этиловый спирт.

СНз - О - СНз СНз - СН2 - ОН

А. М. Бутлеров показал, что между атомами и группами атомов в молекулах органических веществ существует взаимное влияние, причем это влияние могут оказывать друг на друга атомы, непосредственно не связанные между собой. Например, можно объяснить, почему уксусная кислота СНз - СООН является слабой кислотой, а если заместить один атом водорода на атом хлора, образуется сильная хлор уксусная кислота С! - СН2 - СООН.

Теория химического строения является важнейшей основой теоретического фундамента органической химии, она позволила систематизировать огромный практический материал, заранее предсказать свойства и сущест¬вование новых веществ, а также указать пути их получения.

Вклад в химию русского химика, академика Петербургской АН и профессора Петербургского университета, создателя теории химического строения изложен в этой статье.

Бутлеров Александр Михайлович вклад в химию:

Александр Михайлович в 1858 году открыл новый способ синтеза иодистого метилена. При этом он выполнил много задач и работ по его производным.

Химик смог синтезировать диацетат метилена и в процессе его омыления получил полимер формальдегида. На его основе в 1861 году Бутлеров впервые получил уротропин и метиленитан, осуществив при этом первый синтез сахаристого элемента.

Вклад в изучение химии Бутлерова полностью раскрылся в его показательном сообщении 1861 года. В нем он:

  1. Доказал несовершенство бытующих в то время теорий химии.
  2. Подчеркнул значение теории атомности.
  3. Определил понятие химического строения.
  4. Сформулировал 8 правил образования химических соединений.
  5. Бутлеров был первым, кто показал разницу между реакционной способностью разных соединений.

Александр Михайлович выдвинул идею о том, что атомы в молекулы взаимно влияют друг на друга. Он объяснил в 1864 году процесс изомерии большинства соединений органического происхождения. В процессе экспериментов на пользу своей идеи ученый исследовал строение бутилового третичного спирта и изобутилена. Также он осуществил полимеризацию этиленовых углеводородов.

Главная роль Бутлерова в химии состоит в том, что он является основателем учения о таутомерии, заложив его основы.

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Для приготовления пищи, красителей, одежды, лекарств человек издавна научился применять различные вещества. С течением времени накопилось достаточное количество сведений о свойствах тех или иных веществ, что позволило усовершенствовать способы их получения, переработки и т.д. И оказалось, что многие минеральные (неорганические вещества) можно получить непосредственно.

Но некоторые используемые человеком вещества не были им синтезированы, потому что их получали из живых организмов или растений. Эти вещества назвали органическими. Органические вещества не удавалось синтезировать в лаборатории. В начале ХIХ века активно развивалось такое учение как витализм (vita – жизнь), согласно которому органические вещества возникают только благодаря «жизненной силе» и создать их «искусственным путём» невозможно.

Но шло время и наука развивалась, появились новые факты об органических веществах, которые шли вразрез с существовавшей теорией виталистов.

В 1824 году немецкий учёный Ф. Вёлер впервые в истории химической науки синтезировал щавелевую кислоту органическое вещество из неорганических веществ (дициана и воды):

(CN) 2 + 4H 2 O → COOH - COOH + 2NH 3

В 1828 Вёллер нагрел циановокислый натрий с серлым аммонием и синтезировал мочевину – продукт жизнедеятельности животных организмов:

NaOCN + (NH 4) 2 SO 4 → NH 4 OCN → NH 2 OCNH 2

Эти открытия сыграли важную роль в развитии науки вообще, а химии в особенности. Учёные-химики стали постепенно отходить от виталистического учения, а принцип деления веществ на органические и неорганические обнаружил свою несостоятельность.

В настоящее время вещества по-прежнему делят на органические и неорганические, но критерий разделения уже немного другой.

Органическими называют вещества , содержащие в своём составе углерод, их ещё называют соединениями углерода. Таких соединений около 3 миллионов, остальных же соединений около 300 тысяч.

Вещества, в состав которых углерод не входит, называют неорганическим и. Но есть исключения из общей классификации: существует ряд соединений, в состав которых входит углерод, но они относятся к неорганическим веществам (окись и двуокись углерода, сероуглерод, угольная кислота и её соли). Все они по составу и свойствам они сходны с неорганическими соединениями.

В ходе изучения органических веществ появились новые сложности: на основании теорий о неорганических веществах нельзя раскрыть закономерности строения органических соединений, объяснить валентность углерода. Углерод в разных соединениях имел различную валентность.

В 1861 году русский ученый А.М. Бутлеров впервые синтезом получил сахаристое вещество.

При изучении углеводородов, А.М. Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый выявил несколько закономерностей. Они и легла в основу созданной им теории химического строения.

1. Молекула любого органического вещества не является беспорядочной, атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Углерод в органических соединениях всегда четырёхвалентен.

2. Последовательность межатомных связей в молекуле называется еехимическим строениеми отражается одной структурной формулой (формулой строения).

3. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

4. Свойства веществ зависят не только от состава молекул вещества, но от их химического строения (последовательности соединения атомов элементов).

5. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства.

6. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Данная теория стала научным фундаментом органической химии и ускорила её развитие. Опираясь на положения теории, А.М. Бутлеров описал и объяснил явление изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Рассмотрим химическое строение этана C 2 H 6 . Обозначив валентность элементов чёрточками, изобразим молекулу этана в порядке соединения атомов, то есть напишем нё структурную формулу. Согласно теории А.М. Бутлерова, она будет иметь следующий вид:

Атомы водорода и углерода связаны в одну частицу, валентность водорода равна единице, а углерода четырём. Два атома углерода соединены между собой связью углерод углерод (С С). Способность углерода образовывать С С-связь понятна, исходя из химических свойств углерода. На внешнем электронном слое у атома углерода четыре электрона, способность отдавать электроны такая же, как и присоединять недостающие. Поэтому углерод чаще всего образует соединения с ковалентной связью, то есть за счёт образования электронных пар с другими атомами, в том числе и атомов углерода друг с другом.

Это одна из причин многообразия органических соединений.

Соединения, которые имеют один и тот же состав, но различное строение, называются изомерами. Явление изомерии одна из причин многообразия органических соединений

Остались вопросы? Хотите знать больше о теории строения органических соединений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понравилась статья? Поделитесь ей
Наверх